
CENG3430 Rapid Prototyping of Digital Systems

Lecture 08:

Rapid Prototyping (II) –

Embedded Operating System

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

Prototyping Styles with Zynq ZedBoard

CENG3430 Lec08: Integration of ARM and FPGA 2

Hardware Base

System

Board Support

Package

Operating

System

Applications

Hardware Base

System

Board Support

Package

Bare-metal

Applications

Xilinx

Vivado

(HDL)

Xilinx

SDK

(C/C++)

hardware

Program

Logic

(PL)

SDK

(Shell, C,

Java, …)

Process

System

(PS)

software

Programmable

Logic Design

Style 1)

FPGA (PL)

VHDL or Verilog

Programming

Style 2)

ARM + FPGA

ARM Programming

& IP Block Design

Style 3)

Embedded OS

Shell Script &
sysfs EMIO GPIO

Outline

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

• Lab 08: Software Stopwatch with Embedded Linux

CENG3430 Lec08: Integration of ARM and FPGA 3

Why Embedded Operating Systems

• An embedded OS is not necessary for all digital

systems, but it has the following advantages:

– Reducing Time to Market

• OS vendors provide support for various architectures and platforms.

– If a software is mainly developed for an OS rather than a device, it is

easy to be moved to another new architecture or device.

– Make Use of Existing Features

• Embedded OSs offer support for many validated features which

would otherwise have to be developed by the system designer.

– Driver-level support provides the low-level drivers that makes the

connection between the embedded processor and the device.

– Graphical interface-level support deals with the high-level graphical

content that is to be displayed.

– Reduce Maintenance and Development Costs

• By making use of an embedded OS, the amount of custom code

that needs to be developed and tested can be reduced.
CENG3430 Lec08: Integration of ARM and FPGA 4

Zynq Operating Systems

• There’re many Zynq-compatible embedded OSs:

– Xilinx Zynq-Linux: An open source OS based on the Linux

kernel 3.0 with additions such as BSP and device drivers.

– Petalogix® - Petalinux: It provides a complete package to

build, test, develop and deploy embedded Linux systems.

– Xillybus – Xillinux: A desktop distribution of Linux that can

run a full graphical desktop environment on the Zedboard.

• A keyboard and mouse can be attached via the USB On-The-Go

port, while a monitor can be connected to the provided VGA port.

– FreeRTOS: a lightweight real-time OS that is available for a

wide range of devices and processor architectures.

– Further Operating Systems: There are a large number of

OSs for Zynq which are provided by Xilinx partners:

• E.g., Adeneo Embedded Windows CE 7.0, Linux, Android and QNX.

CENG3430 Lec08: Integration of ARM and FPGA 5

Outline

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

• Lab 08: Software Stopwatch with Embedded Linux

CENG3430 Lec08: Integration of ARM and FPGA 6

Linux System Overview

• Below shows a generalized GNU/Linux System:

CENG3430 Lec08: Integration of ARM and FPGA 7

SCI facilitates function

calls from the user space

to the kernel of system.

Hardware devices are

abstracted from the user-

level by the kernel space.

Applications run on top of

the kernel in user-space.

Kernel provides a set of

tools with which the user

can interact with hardware.

Platform-specific code:

BSP (board support package).

Linux Kernel

• Linux kernel is of

subsystems providing

required services:

– Memory Management

– Process Management

– Virtual File System

– Device Drivers

• A system call provides

interaction between

user application and

kernel services.

– Where direct calls are

NOT possible.
CENG3430 Lec08: Integration of ARM and FPGA 8

.app

Interactions between PS and PL

CENG3430 Lec08: Integration of ARM and FPGA 9

The Zynq-Linux can be

performed on the ARM

CPU (PS) of ZedBoard.

• Question: Can we
design an application
to access PS or PL
peripherals on top of
Zynq-Linux?

• Answer: Yes, through
the GPIO interface.

CENG3430 Lec08: Integration of ARM and FPGA 10

• General-purpose input/output (GPIO):

– Uncommitted digital signal pins on an integrated circuit or

board whose behavior—including whether it acts as input

or output—is controllable by the user at run time.

• There are total 118 GPIO pins (54 MIO pins and 64

EMIO pins) on Zynq.

– Multiplexed I/O (MIO): Connections to PS peripheral ports

• GPIO IDs: from 0 to 53

– Extended MIO (EMIO): Connections to PL peripheral ports

• GPIO IDs: from 54 to 117

General-Purpose Input/Output (GPIO)

MIO

EMIO

Connections to PS/PL Peripherals

CENG3430 Lec08: Integration of ARM and FPGA 11

• Multiplexed I/O (MIO)

– Connections to PS

peripheral ports

• Extended MIO (EMIO)

– Connections to PL

peripheral ports

CENG3430 Lec08: Integration of ARM and FPGA 12

• Zynq-Linux defines 60 EMIO signals to control the PL
peripherals in system.ucf:

– USB OTG Reset: processing_system7_0_GPIO<0>

– OLED: processing_system7_0_GPIO<1>~<6>

– LED: processing_system7_0_GPIO<7>~<14>

– Switches: processing_system7_0_GPIO<15>~<22>

– Buttons: processing_system7_0_GPIO<23>~<27>

– Pmod (JA~JD): processing_system7_0_GPIO<28>~<59>

– Note: The actual GPIO IDs for EMIO pins should be shifted by

54, since GPIO IDs #0 to #53 are used by MIO pins .

EMIO Pins of Zynq-Linux

CENG3430 Lec08: Integration of ARM and FPGA

Accessing GPIOs as Files (1/2)

• The standard way to control GPIOs in Linux is
through the sysfs interface (/sys/class/gpio):

– sysfs is a pseudo file system provided by the Linux kernel

that exports information about various kernel subsystems,

hardware devices, and associated device drivers from the

kernel's device model to user space through virtual files.

13

User Applications (e.g., shell script, c/c++, etc.)

System Call Interface

Virtual File System (VFS)

GNU C Library

TmpFS

/dev

ProcFS

/proc

SysFS

/sys

VolFS

/, /home

DriveFS

/mnt/c

USER

SPACE

KERNEL

SPACE

Hardware (e.g., LED, Switch, Pmods, etc.)

.sh

R
 /
 W

virtual

files

Accessing GPIOs as Files (2/2)

• GPIO (/ sys/class/gpio) can be operated by

regular file operations under Linux.

– Export an GPIO (from the kernel space to the user space):

$ echo $id > /sys/class/gpio/export

– Set the direction of an GPIO:

$ echo “in” > /sys/class/gpio/gpio$id/direction

$ echo “out” > /sys/class/gpio/gpio$id/direction

– Read the value of an GPIO:

$ cat /sys/class/gpio/gpio$id/value

– Change the value of an GPIO:

$ echo $v > /sys/class/gpio/gpio$id/value;

– Un-export an GPIO:

$ echo $id > /sys/class/gpio/unexport
CENG3430 Lec08: Integration of ARM and FPGA 14

Dash Shell Script (#/bin/sh)

• A shell script is a list of commands that can run by

the Unix shell directly in a sequential manner.

– Unix shell is a command line (or terminal) interpreter.

• Common commands of a shell script:

– Comment: # comment

– Arguments: $0, $1, $2, …

– Variable: $var

– Command: $(command) or `command`

– Expression: $((expression))

– Loop: for i in $(seq 1 n) do ... done;

– Function Call: function_name parameters;

– Read from File: cat file_path;

– Write to File: echo $value > file_path;
CENG3430 Lec08: Integration of ARM and FPGA 15

Outline

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

• Lab 08: Software Stopwatch with Embedded Linux

CENG3430 Lec08: Integration of ARM and FPGA 16

Lab 08: Linux GPIO Stopwatch

• In Lab 08, we will implement a software stopwatch,

which interacts with PL peripherals via GPIOs, in

Zynq-Linux by using the shell scripts.

CENG3430 Lec08: Integration of ARM and FPGA 17

Booting the ZedBoard from SD Card

• The ZedBoard user specifies the method of booting /

programming via a set of jumper pins.

– The middle three are for specifying programming source.

CENG3430 Lec08: Integration of ARM and FPGA 18

Cascaded: A single JTAG

connection is used to interface to

the debug access ports in both the

PS and PL.

The PLL mode determines whether

the process of configuring the

device includes a phase of waiting

for the PLL to lock

Zynq Development Setup

• Joint Test Action Group (JTAG): Downloading designs

onto the development board over JTAG

• Universal Asynchronous Receiver/Transmitter (UART)

and Terminal Applications: Interfacing and debugging

CENG3430 Lec08: Integration of ARM and FPGA 19

Sample Script 1) read_sw.sh

#!/bin/sh

value=0;

for i in 0 1 2 3 4 5 6 7; # total 8 switches, GPIO ID from 69~76.

do

sw=$((76-$i));

sw_tmp=`cat /sys/class/gpio/gpio$sw/value`; # read the value

from the sw using corresponding gpioID

value=$(($value*2)); # add the value in order, since we read the

binary value so using 2 instead of 10 here

value=$(($value+$sw_tmp));

done;

printf "0x%x %d\n" $value $value; # print out value in both

hexadecimal & decimal format

CENG3430 Lec08: Integration of ARM and FPGA 20

Sample Script 2) write_led.sh

#!/bin/sh

value=$(($1)); # arguments of the script (e.g., write_led 0xFF)

if [$value -ge 0]; then

for i in 0 1 2 3 4 5 6 7; # total 8 LEDs, GPIO IDs from 61~68

do

led=$(($i+61)); # i-th GPIO pin corresponding to i-th LED

echo $(($value&0x01)) > /sys/class/gpio/gpio$led/value;

use bit-wise and (i.e., '&') operation to get the right-most

bit and write to i-th GPIO pin

value=$(($value/2)); # use divide operation to remove the

previous right-most bit

done;

fi;

CENG3430 Lec08: Integration of ARM and FPGA 21

Sample Script 3) single_count_down.sh

CENG3430 Lec08: Integration of ARM and FPGA 22

#!/bin/sh

display() { # function display

value=$1 # the first argument is

the number to be shown on the seven-

segment display

echo $2 >

/sys/class/gpio/gpio93/value; # the

second argument defines which seven-

segment will be used (where GPIO ID

93 is ssdcat)

for i in 0 1 2 3 4 5 6;

do

pin=$((92-$i));

if [$i -gt 2];

then

pin=$(($pin-4));

JA:82~85 / JB: 90~92

fi;

echo $(($value&0x01)) >

/sys/class/gpio/gpio$pin/value; #

write to the corresponding "segment"

value=$(($value/2)); # move to

next segment

done;

}

seven-segment display patterns,

representing in decimal values

p0=126;

p1=48;

p2=109;

…

p15=71;

for i in $(seq 0 15); # display 0~15

do

idx=$((15-$i)); # count down the

number to be shown on the SSD

display $((p$idx)) 0; # invoke

the display function, argument #1 is

the pattern of the i-th number,

argument #2 is the ssdcat for

selecting the left/right seven-

segment

sleep 1; # delay one sec

done;

…

Recall: Dash Shell Script (#/bin/sh)

• A shell script is a list of commands that can run by

the Unix shell directly in a sequential manner.

– Unix shell is a command line (or terminal) interpreter.

• Common commands of a shell script:

– Comment: # comment

– Arguments: $0, $1, $2, …

– Variable: $var

– Command: $(command) or `command`

– Expression: $((expression))

– Loop: for i in $(seq 1 n) do ... done;

– Function Call: function_name parameters;

– Read from File: cat file_path;

– Write to File: echo $value > file_path;
CENG3430 Lec08: Integration of ARM and FPGA 23

How to Run .sh Files?

• Give execute permission to your script:

zynq> chmod +x /path/to/yourscript.sh

• Run your script (“.” refers to current directory):

zynq> /path/to/yourscript.sh

zynq> ./yourscript.sh

CENG3430 Lec08: Integration of ARM and FPGA 24

 Not necessary to have the file extension in Linux

Summary

• Embedded Operating System

– Why Embedded Operating Systems

– Types of Operating Systems

– Zynq Operating Systems

• Case Study: Embedded Linux

– Linux System Overview

– Linux Kernel

– Linux GPIO Driver: GPIO sysfs Interface

– Shell Script

• Lab 08: Software Stopwatch with Embedded Linux

CENG3430 Lec08: Integration of ARM and FPGA 25

